skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fawcett, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Diatom-dominated blooms in coastal upwelling systems contribute disproportionately to global primary production. The fate of carbon captured during a diatom bloom is often influenced by species-specific ecological differences. However, successional patterns that take place during a diatom bloom are often oversimplified, and the diversity of diatom adaptations to different stages of a bloom remains poorly characterized. To improve our understanding of diatom specificity to certain conditions within a bloom, we employed microscopy, 18S rRNA amplicons, and biogeochemical analysis within a simulated upwelling mesocosm experiment. We successfully simulated a diatom bloom and found that diatoms bloomed during early and late phases of the bloom. Surprisingly, the relative abundance of congeneric diatoms with the Thalassiosira, Chaetoceros, and Pseudonitzschia displayed opposing patterns that were consistent among experimental mesocosms. The late stage of the bloom was especially interesting because some diatoms continued to bloom among mixotrophic dinoflagellate genera Akashiwo, Heterocapsa, and Prorocentrum. Additionally, Syndiniales putative parasites were correlated with several diatoms, especially in the initial phase of the bloom. The novel observations of consistent rapid successional changes within our mesocosms reflect the ability of diatom and dinoflagellate genera to occupy bloom conditions that fall outside traditional expectations. Syndiniales parasite co-occurrence with blooming diatoms may be important to successional trends of coastal diatom populations, and this parasitic interaction deserves further study in coastal upwelling systems. This study indicates there are underlying diatom traits and biotic interactions that should be considered when estimating their contribution to productivity and carbon cycling within upwelling systems. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  2. St Helena Bay (SHB), a retentive zone in the productive southern Benguela Upwelling System off western South Africa, experiences seasonal hypoxia and episodic anoxic events that threaten local fisheries. To understand the drivers of oxygen variability in SHB, we queried 25 years of dissolved oxygen (DO) observations alongside high‐resolution wind and hydrographic data, and dynamical data from a high‐resolution model. At 70 m in SHB (mid‐bay), upwelling‐favorable winds in spring drove replenishment of cold, oxygenated water. Hypoxia developed in summer, becoming most severe in autumn. Bottom waters in autumn were replenished with warmer, less oxygenated water than in spring—suggesting a seasonal change in source waters upwelled into the bay. Downwelling and deep mixing in winter ventilated mid‐bay bottom waters, which reverted to hypoxic conditions during wind relaxations and reversals. In the nearshore (20 m), hypoxia occurred specifically during periods of upwelling‐favorable wind stress and was most severe in autumn. Using a statistical model, we extended basic hydrographic observations to nitrate and DO concentrations and developed metrics to identify the accumulation of excess nutrients on the shelf and nitrogen‐loss to denitrification, both of which were most prominent in autumn. A correspondence of the biogeochemical properties of hypoxic waters at 20 m to those at 70 m implicates the latter as the source waters upwelled inshore in autumn. We conclude that wind‐driven upwelling drives the replenishment of respired bottom waters in SHB with oxygenated waters, noting that less‐oxygenated water is imported later in the upwelling season, which exacerbates hypoxia. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. In regions of the surface ocean with significant concentrations of unconsumed nitrate (NO3-), such as the Southern Ocean, phytoplankton preferentially assimilate the 14N-bearing form of NO3- during NO3- assimilation. This discrimination against the heavier, 15N-bearing form of NO3- is quantified by the NO3- assimilation isotope effect (15e). While a 15e of 5 per mil is commonly assumed for phytoplankton NO3- assimilation, previous field-based observations of the 15e have ranged from 4 to 11 per mil, and even wider variations in 15e have been observed in culture studies that have subjected phytoplankton to iron and/or light stress. In spite of this prior work, we lack a mechanistic explanation for variations in 15e, yet this information is required for interpreting modern water column NO3- d15N and d18O measurements as well as paleoceanographic d15N records. Here we report 15e estimates from springtime water column NO3- isotope profiles collected across four major zones (Subantarctic, Polar Frontal, Antarctic, and Marginal Ice Zones) in the Atlantic sector of the Southern Ocean on the SCALE cruise (Southern oCean seAsonal Experiment; Oct.-Nov. 2019). Consistent with prior austral summer observations, we generally find higher values of 15e in the Subantarctic compared to the Antarctic; however, variations exist within each zone. These data are interpreted in the context of seasonal mixing (closed vs. open system models), phytoplankton community composition, and physiological markers of iron and light stress. 
    more » « less
  4. Abstract The southern Benguela upwelling system (SBUS) supports high rates of primary productivity that sustain important commercial fisheries. The exceptional fertility of this system is reportedly fueled not only by upwelled nutrients but also by nutrients regenerated on the broad and shallow continental shelf. We measured nutrient concentrations and the nitrogen (N) and oxygen (O) isotope ratios (δ15N and δ18O) of nitrate along four zonal lines in the SBUS in late summer and early winter to evaluate the extent to which regenerated nutrients augment the upwelled nutrient reservoir originating offshore. During summer upwelling, a decrease in on‐shelf nitrate δ18O revealed that 0–48% of the subsurface nutrients derived from in situ remineralization. The nitrate regenerated on‐shelf in the more quiescent winter (0–63% of total nitrate) extended further offshore along the mid‐shelf. A shoreward increase in subsurface nitrate δ15N and a greater N deficit in on‐shelf bottom waters further indicated N loss to benthic (and at times, watercolumn) denitrification coincident with the on‐shelf remineralization. Our data show that remineralized nutrients get trapped on the SBUS shelf in summer through early winter, enhancing the nutrient pool that can be upwelled to support surface production. We hypothesize that this process is aided by a number of equatorward‐flowing hydrographic fronts that impede the lateral exchange of surface waters. The extent to which nutrients remain trapped on the shelf has implications for the occurrence of hypoxic events in the SBUS. 
    more » « less